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Introduction

Primary mediastinal sarcomas represent an extremely 
rare and heterogenous group of mesenchymal neoplasms 
comprising <10% of primary mediastinal tumors and 
1–2% of all soft tissue sarcomas (1-4). Despite their rare 
occurrence, primary mediastinal sarcomas tend to have 
an aggressive clinical course with a poor overall survival, 
usually worse than that of other types of mediastinal 
tumors (4-6). The mediastinal compartment is unique 
in that it houses multiple different tissue types allowing 
for great heterogeneity of both benign and malignant 
mesenchymal tumor types (7,8). It is difficult to determine 
the exact incidence of sarcoma subtypes arising within 

the mediastinum given their rarity and because multiple 
studies have reported different incidences for the different 
tumor types (4-7,9,10). Although predicated upon the 
accuracy of the initial diagnosis and proper reporting, 
evaluation of the National Cancer Database and the 
Surveillance, Epidemiology, and End Results Program 
(SEER) database highlights a group of tumors that appear 
to occur most commonly as primary mediastinal sarcomas 
(5,9). These tumors include synovial sarcoma, liposarcoma, 
malignant peripheral nerve sheath tumor (MPNST), 
small round blue cell sarcomas (including Ewing sarcoma) 
and leiomyosarcoma (LMS) (4-7,9). A single study lists 
angiosarcoma with the common mediastinal sarcomas, 
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however it is unclear whether these represented primary 
cardiac angiosarcomas or true primary mediastinal 
angiosarcomas (5). A wide variety of other sarcoma types 

have also been reported to occur in the mediastinum  
(Table 1) (6,8,9,11-24). Another soft tissue mesenchymal 
neoplasm that occurs with some frequency within the 
mediastinum is solitary fibrous tumor (SFT). Although 
generally regarded as having indolent or low-grade 
behavior, these tumors may behave in an aggressive 
manner and have a small, but definitive, malignant 
potential and are therefore included in this discussion 
(25,26). In addition, a recently described entity that can 
occur within the mediastinum, pleura, or chest wall; 
SMARCA4-deficient undifferentiated tumor/sarcoma will 
be briefly discussed (27).

The differential diagnosis of mediastinal sarcomas may 
be difficult due to their rare nature and often overlapping 
clinical and histologic features. Generally, the workup 
and diagnosis of primary mediastinal sarcomas is similar 
to that of their extramediastinal soft tissue counterparts. 
Traditionally the diagnosis has been based on a combination 
of clinical, radiological, histologic and immunohistochemical 
features, however, various cytogenetic and molecular tests 
have proved to be valuable ancillary modalities to help 
differentiate soft tissue sarcomas (28-31). Within the past 
decade the emergence of massively parallel sequencing 
technologies such as next generation sequencing (NGS) 
have allowed for more comprehensive evaluation of soft 
tissue sarcomas and the discovery of new genetic driver 
events underlying these lesions (32-37). Although the 
management of sarcomas is still evolving, access to new 
information about the underlying molecular genetic events 
driving these lesions will soon become a routine part of 
clinical practice as personalized medicine continues to 
advance. This review aims to focus on molecular diagnostics 
and their contribution to the differential diagnosis of 
mediastinal sarcomas with a focus on the most common 
tumor subtypes.

General molecular features and use of molecular 
diagnostics in mediastinal sarcomas

Bone and soft tissue tumors of the mediastinum can generally 
be characterized into two broad categories: those with 
complex karyotypes that lack recurrent genomic alterations 
and those with relatively simple karyotypes that harbor 
specific, recurrent genomic alterations. Tumors with a high 
degree of genomic instability, such as LMS, osteosarcoma 
and undifferentiated pleomorphic sarcoma, generally do not 
lend themselves to molecular diagnostic testing due to their 

Table 1 Common and uncommon mediastinal sarcomas

More common mediastinal sarcomas

Synovial sarcoma

Well-differentiated liposarcoma

Dedifferentiated liposarcoma

Malignant peripheral nerve sheath tumor

Ewing sarcoma

Leiomyosarcoma

SMARCA4-deficient thoracic sarcoma

Solitary fibrous tumor^

Less common mediastinal sarcomas

Rhabdomyosarcoma

Clear cell sarcoma

Low-grade fibromyxoid sarcoma 

Myxoid liposarcoma

Alveolar soft part sarcoma

Epithelioid hemangioendothelioma 

Epithelioid sarcoma 

Extraskeletal myxoid chondrosarcoma 

Mesenchymal chondrosarcoma 

Extrarenal rhabdoid tumor 

Malignant pecoma 

Follicular dendritic cell sarcoma

Angiosarcoma*

Chondrosarcoma

Osteosarcoma

Chordoma

Various undifferentiated sarcomas
^, solitary fibrous tumor is generally not included under 
the category of “sarcoma” but is included here due to 
its frequent occurrence and potential for aggressive/
malignant behavior. *, the majority of angiosarcomas of the 
mediastinum have been reported in studies in which cardiac 
tumors were included, primary mediastinal angiosarcoma 
not associated with cardiac tissue is exceedingly rare.
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lack of specific or recurrent genetic aberrations, although 
investigations may still be carried out to rule out other 
sarcoma subtypes in the differential diagnosis or provide the 
maximal amount of information on the patient’s tumor to 
the clinician (such as identifying a potential alteration that 
would qualify a patient for an experimental trial). However, 
a large subgroup of bone and soft tissue tumors which occur 
within the mediastinum are characterized by consistent 
and recurrent genetic abnormalities similar to their extra-
mediastinal counterparts. For this group of tumors, the 
high rate of specific, recurrent genetic abnormalities 
allows molecular testing to offer important diagnostic and 
prognostic information, help guide clinical management and 
treatment, and allows for recruitment of patients in ongoing 
clinical trials (37).

Genetic features of mediastinal sarcomas

Recurrent genetic abnormalities in soft tissue tumors in 
general most commonly fall into one of four categories: 
translocations, activating oncogenic mutations, inactivating 
oncogenic mutations, and copy number alterations such as 
gains, deletions, and amplifications (38). The commonest 
mediastinal sarcomas are almost exclusively comprised of 
tumors defined by translocations, inactivating oncogenic 
mutations, and amplification events of specific chromosomal 
regions (Table 2).

Translocations

Approximately 30% of bone and soft tissue tumors are 
characterized by recurrent chromosomal translocations  
(38-40). Translocations are rearrangements of genetic 
material that lead to novel juxtapositions of particular genes 
based on where chromosomal breaks have occurred. These 
gene rearrangements result in the formation of fusion 
oncogenes which are often involved in the pathogenesis 
and proliferation of the neoplastic cells, although it is 
worth noting that not all rearrangements lead to functional 
fusion proteins depending on the genes translocated as 
well the orientation of the genes themselves. One of the 
best characterized gene fusions in soft tissue sarcoma is the 
EWSR1 translocation in Ewing sarcoma. The most common 
rearrangement involves the long of arm of chromosome 
11 with the long arm of chromosome 12, t(11;22)
(q24q12), leading to a FLI1-EWSR1 fusion gene (41). At 
the molecular level fusions in many tumors may occur 
through a diverse combination of genetic material with 
various different transcripts existing for one fusion gene (see 
Ewing sarcoma section). It is worth noting that recurrent 
translocations usually occur in the background of simple 
karyotypes and that some genes involved in translocations 
have a diverse array of partner genes. In addition, certain 
genes are known to be involved in numerous translocations 
across multiple tumor types, for example, other than 

Table 2 Translocations and other genetic alterations in the most common mediastinal sarcomas

Tumor type Genetic alteration Recurrent fusion or abnormality

Synovial sarcoma t(X;18)(p11;q11), t(X;20)(p11;q13) SS18-SSX1, SS18-SSX2, SS18-SSX4, 
SS18L1-SSX1

Well-differentiated and 
dedifferentiated liposarcoma

Supernumerary ring and giant chromosome markers with 
amplification of 12q13-15, including MDM2 and CDK4

Cell cycle dysregulation, overexpression 
of MDM2 and CDK4

Leiomyosarcoma Generally complex karyotypes with numerous gains 
and losses. No consistent recurrent aberrations at the 
chromosomal level

None

Ewing sarcoma/PNET t(11;22)(q24;q12), t(21;22)(q22;q12), t(7;22)(q22;q12), 
t(17;22)(q21;q12), t(2;22)(q36;q12)

EWSR1-FLI1, EWSR1-ERG, EWSR1-
ETV1, EWSR1-ETV4, EWSR1-FEV

Solitary fibrous tumor* Intrachromosomal inversion of 12q13 region NAB2-STAT6

SMARCA4-deficient thoracic 
sarcoma

Point mutations leading to loss of SMARCA4 Dysregulation of SWI/SNF (BAF) 
complex  

Malignant peripheral nerve 
sheath tumor

Various somatic alterations in CDKN2A, NF1, EED, 
SUZ12, SMARCB1 (epithelioid variant) 

Dysregulation of polycomb repressive 
complex 2 (PRC2)

*, solitary fibrous tumor is generally not regarded as a “true sarcoma”, however, it is included here due to its potential for malignant 
and/or aggressive behavior and relatively common occurrence within the mediastinum. PNET, peripheral neuroectodermal tumor.
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Ewing sarcoma the EWSR1 gene can also be identified in 
the translocations of round cell liposarcoma, extraskeletal 
myxoid chondrosarcoma, atypical Ewing sarcomas, and 
clear cell sarcoma amongst others (42).

Inactivating oncogenic mutations

Single nucleotide variants as well as small insertions and 
deletions are responsible for a variety of inactivation 
events in many different tumor types. In the mediastinum, 
a small group of sarcomas are characterized primarily by 
inactivating oncogenic events including extrarenal rhabdoid 
tumor, epithelioid sarcoma, epithelioid MPNST and the 
recently described SMARCA4-deficient undifferentiated 
thoracic tumor/sarcoma (1,4,17,20,27). Loss of gene 
function may occur through a combination of events 
including deletions, inactivating point mutations, copy 
neutral loss of heterozygosity and epigenetic events such 
as DNA methylation and histone modification (43-46). 
The diverse modes of gene inactivation present in these 
tumor types may require multiple testing modalities to 
accurately identify, although NGS with large mutation/
fusion panels that also provide copy number information 
allow for evaluation of many of these changes in a single 
test (37,45,47).

Amplification events

Copy number alterations and amplification events occur 
less commonly in mediastinal sarcomas and usually apply 
to sarcomas which fall into the complex karyotype category 
of tumors (undifferentiated high-grade sarcomas, LMS and 
osteosarcoma). Well-differentiated and dedifferentiated 
liposarcoma are also characterized by a recurrent 
amplification event (48-51). Tumors in the high complexity 
category tend to have multiple different chromosomal 
events leading to copy number alterations in combination 
with other types of molecular abnormalities such as 
mutations—the majority of these tend to be non-recurrent 
events between different tumor subtypes as well as within 
the same tumor types making molecular evaluation of the 
lesions less useful in routine clinical practice. However, 
amplification events of a specific region of 12q13-15 
tend to be the sole abnormality in well-differentiated 
liposarcoma and dedifferentiated liposarcoma (although de-
differentiated may have additional genetic alterations such 
as mutations) (50,52). Copy number alterations in soft tissue 
neoplasms are particularly amenable to rapid diagnostic 

testing by fluorescence in situ hybridization (FISH) when 
probes are available, but may also be identified by array-
based techniques or sequencing assays.

Advantages and disadvantages of different cytogenetic/
molecular tests

As mentioned before, FISH, array-based assays including 
array comparative genomic hybridization (aCGH)/single 
nucleotide polymorphism (SNP) arrays, polymerase 
chain reaction (PCR) based assays and early-generation 
sequencing technologies such as Sanger sequencing and 
pyrosequencing have all traditionally constituted the 
backbone of molecular diagnostics in bone and soft tissue 
tumors (29,30,32). More recently the introduction of 
massively parallel targeted sequencing assays, including 
NGS, has opened new avenues for testing of soft tissues 
tumors by allowing a single tumor to be tested for multiple 
different genetic abnormalities with one assay (35-37). 
All of these technologies have certain advantages and 
disadvantages (Table 3) and the type of testing offered by 
different laboratories varies widely making it important for 
pathologists to understand the advantages and limitations 
of particular assays to identify the proper type of test for 
a identifying a particular genetic alteration. For example, 
FISH and PCR may be used to identify specific genetic 
abnormalities in a case where a particular diagnosis is 
suspected at a low price with a rapid turnaround time. 
While array, karyotype and sequencing may be better 
options for difficult tumors where the diagnosis is unknown 
and the pathologist desires the maximum amount of genetic 
information to help inform the differential diagnosis. 
Particular attention should also be paid to the type of 
sample required for the different assays with the caveat that 
many molecular assays such as FISH, array, PCR, and NGS 
may not work properly or completely fail when attempted 
on decalcified specimens due to the degradation of nucleic 
acids (53,54).

Common mediastinal sarcomas

While primary mediastinal sarcomas are extremely rare 
tumors in general, there is a group of sarcomas that appear 
to occur more commonly across multiple published series 
as compared to other sarcoma subtypes (1,3,5,6,8,9). These 
mediastinal sarcomas for the most part have some specific, 
recurrent genetic abnormalities that allow for molecular 
testing to play a significant role in the diagnosis of these 
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tumors. It is important to note that many of the lesions in 
this category present with a characteristic clinical picture, 
as well as distinct morphological and immunohistochemical 
profiles that potentially allows for diagnosis without 
molecular diagnostics. However, molecular testing 
can help confirm a suspected diagnosis and is also 
useful for high grade lesions where the morphology or 
immunohistochemistry (IHC) profile may be non-specific. 
As mentioned previously, the mediastinum encompasses 
multiple different tissues types and depending on one’s 
definition of the mediastinal compartment the diagnosis of a 
primary mediastinal sarcoma may change. For example, true 
primary mediastinal angiosarcoma unassociated with the 
heart is exceedingly rare (55), despite being included in the 
analysis of some studies (5). What follows is a brief review 
of the molecular aspects of the most common mediastinal 
sarcomas.

Synovial sarcoma

Synovial sarcoma has been traditionally grouped with 
tumors of uncertain histogenesis. Recent molecular 
expression studies suggest a myogenic origin, although 
this is inconsistent with the characteristic IHC profile 
that shows epithelial marker expression and lack of 
expression of myogenic markers (56). Synovial sarcoma 
is defined by a fusion oncoprotein; SS18-SSX, resulting 

from a characteristic reciprocal t(X;18)(p11.2;q11.2). This 
translocation fuses SS18 with one of three SSX genes 
clustered on chromosome X (Xp11.2); either SSX1, SSX2, 
or rarely SSX4 (57). An alternative, much less common, 
t(X;20)(p11;q13) has also been described which leads to 
an SS18L1-SSX1 fusion oncoprotein (58). The fusion 
oncoprotein results in dysregulation of SS18, a member of 
the chromatin remodeling SWI/SNF (BAF) complex (56). 
Studies correlating specific SS18-SSX fusion transcripts 
with histologic subtype or impact on prognosis have 
had conflicting results and primary mediastinal synovial 
sarcomas have not been well represented (59-61). Diagnosis 
of the fusion protein may be quickly performed with 
reasonably high sensitivity by FISH and PCR (Figure 1) 
(59,60). Testing of synovial sarcoma with NGS fusion 
panels allows for identification of the specific partner 
genes which cannot be identified through FISH and may 
be missed by PCR depending on the primer sets or type 
of PCR assay used (57,62). Studies that have examined 
primary mediastinal synovial sarcomas have identified that 
they share the same genetic alterations as their soft tissue 
counterparts (63,64).

Liposarcoma

Liposarcoma is a tumor of adipocytic origin characterized 
by supernumerary ring and marker chromosomes  
(Figure 2A). The supernumerary chromosomes are most 
often composed of genomic material from the q13-15 
region on chromosome 12 (65,66). The q13-15 region 
contains several genes, including the genes MDM2 and  
CDK4 (67). Although many other genetic alterations 
including numerous somatic mutations, other gene 
amplification events, and gene deletions have been described 
in well- and dedifferentiated liposarcoma, amplification 
of MDM2 and CDK4 (particularly MDM2) has been 
accepted as the diagnostic criteria for well-differentiated 
liposarcoma and de-differentiated liposarcoma (68-70). 
MDM2 amplification leads to overexpression of MDM2, 
promoting tumorigenesis by dysregulation of the p53 
pathway (Figure 2B) (71). Amplification of CDK4 leads to 
overexpression of CDK4 that can then bind to cyclin D at 
increased levels, leading to interference with the E2F-RB 
interaction that acts as a cell cycle progression check from 
the G1 to S phase transition (72). Few series exist examining 
mediastinal liposarcomas; however, the predominant 
tumor subtypes across all series appear to be well- and 
dedifferentiated liposarcoma, the majority of which 

Figure 1 FISH performed on paraffin embedded tissue for SS18 
(18q11.2) shows one green/red/yellow signal (intact probe, no 
rearrangement) as well as separated green and red signals (arrows) 
representing the 3’ and 5’ ends of the SS18 break apart probe. 
Break apart FISH probes are a common strategy for detecting re-
arrangements in which a dual color FISH probe is applied across 
a gene of interest and if a translocation is present that disrupts the 
gene the probe physically “breaks apart” as seen here.
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showed the characteristic amplifications or IHC expression  
(73-76). Amplification of MDM2 and CDK4 has been 
shown to correlate extremely well with IHC for MDM2 
and CDK4, allowing IHC to serve as an excellent 
screening tool, however confirmation of the diagnosis 
by molecular techniques is always recommended (77). 
Generally, this is best accomplished with FISH using 
probes specific to MDM2 that are widely available, 
although copy number alterations may be assessed by 
array as well as certain NGS-based assays that provide 
copy number information (70). Of note, other subtypes of 
liposarcoma, such as myxoid and pleomorphic, may less 
commonly occur in the mediastinum (75).

LMS

LMS represents a mesenchymal tumor of smooth muscle 
origin characterized by complex cytogenetic and molecular 
aberrations (78,79). Cytogenetically LMS displays complex 
karyotypic changes that can include numerous gains, losses, 
rearrangements as well as chromothripsis (chromosomal 
shattering) in up to 35% of cases (79). Targeted exome 
sequencing studies have identified that the most frequent 
cytogenetic changes involve losses of material containing 
important tumor suppressor genes including PTEN (10q), 
RB1 (13q), CDH1 (16q), and TP53 (17p) (78). Mutations 
in TP53, RB1, and ATRX have been identified as the most 
common mutations to occur in LMS, although additional 
mutations in genes related to multiple signaling pathways, 
cell cycle regulation, DNA damage repair, muscle cell 

proliferation and epigenetic regulation are enriched as  
well (79). Primary mediastinal LMS have only been 
reported in small series or case reports, although they 
comprised a significant percentage of mediastinal sarcomas 
(~10%) in a large study which reviewed the National 
Cancer Database for cases of mediastinal sarcomas  
(5,80-82). Few, if any, primary mediastinal LMS’s have 
been examined by molecular techniques, although they 
likely share similar genetics to their soft tissue counterparts 
at extramediastinal sites. LMS is a clinicopathologic 
diagnosis and can often be made in the context of 
appropriate histomorphology and IHC supporting smooth 
muscle differentiation, making molecular genetic testing 
for the purposes of diagnosis less useful compared to 
sarcomas with specific, recurrent genetic abnormalities. 
However, clinically relevant molecular subtypes of LMS 
have been described and as new targeted therapies emerge 
molecular testing may play a larger role in guiding 
management and informing prognosis (83).

MPNST

MPNST is a tumor of neural origin which can occur in the 
mediastinum and which arises most commonly in patients 
with neurofibromas and neurofibromatosis type 1 (NF1) 
(5,9). The tumors occur most often within the posterior 
mediastinum in association with nerves located within that 
compartment, although rare cases have been described 
in the anterior mediastinum (84-87). These lesions may 
arise from malignant transformation of benign neural 

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15

19 20 21 22

48, XY, +rx2[3]

X Y

16 17 18

mar

A B

Figure 2 MDM2 amplification in dedifferentiated liposarcoma. (A) Karyotype from a dedifferentiated liposarcoma shows a 48,XY,+rx2 
karyotype (identified in 3 out of 20 cells) with two supernumerary marker ringed chromosomes (arrow). These ringed chromosomes may 
contain material from the 12q13-15 region including MDM2 and CDK4. Note the remaining chromosomes appear normal (Image courtesy 
of Dr. Christine Bryke, Boston, MA, USA). (B) Interphase FISH using a probe for MDM2 on FFPE tissue shows multiple cells (arrows) with 
increased MDM2 copy number consistent with amplification, magnification: 100×.
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tumors, but may also occur sporadically (88,89). MPNST 
is characterized predominantly by recurrent mutations 
in NF1, TP53, CDKN2A, SUZ12, and EED (88-91). In 
particular, recurrent loss of function mutations in SUZ12 
and EED lead to dysregulation of the polycomb repressive 
complex 2 (PRC2) with downstream dysregulation of the 
Ras pathway (92). MPNST’s with PRC2 loss have been 
shown to have loss of trimethylation at lysine 27 of histone 
H3 (H3K27me3) which can be identified with a monoclonal 
antibody against H3K27me3 (88,93). The epithelioid 
variant has been shown to have loss of SMARCB1 (94). The 
diagnosis of MPNST is currently accomplished primarily 
through clinicopathologic correlation and IHC, although 
the discovery of recurrent mutations in a high proportion of 
MPNST’s may allow molecular testing to play a larger role 
in their diagnosis.

Ewing sarcoma/primitive neuroectodermal tumor (PNET)

Ewing sarcoma represents an undifferentiated primitive 
small round blue cell sarcoma of uncertain histogenesis (8).  
This sarcoma is characterized by a classic t(11;22)
(q24;q12) creating an oncogenic fusion protein; EWSR1-
FLI1 (32,94). Less commonly, other EWSR1-ETS family 
rearrangements may occur (Table 2). The EWSR1-FLI1 
fusion may form from various different transcripts at the 
molecular level; 60% are designated as type 1 fusions that 
fuse exon 7 of EWSR1 to exon 6 of FLI1, while 20% are 

designated as type 2 fusions that fuse exon 7 of EWSR1 
to exon 5 of FLI1 (Figure 3A) (41). Numerous additional 
variant fusions have been described including breakpoints 
in the regions of exons 3 through 8 on FLI1, however 
these are less common than type 1 or type 2 changes (32). 
In past years the specific transcript identified held clinical 
significance as the patients could potentially respond 
to treatment differently, however, updated treatment 
regimens appear to have eliminated these differences and 
the need for reporting the exact transcript (41). Given that 
EWSR1 is a constant fusion partner in Ewing sarcoma, 
molecular testing can be rapidly and easily done using 
FISH break apart probes (Figure 3B) (95). As many of 
the EWSR1 fusion partners have been delineated over 
the years, reverse transcriptase PCR may also be used 
to accurately and quickly identify rearrangements (96). 
Tumors occurring within the mediastinum have been 
shown to harbor the characteristic translocations and are 
thus amenable to molecular testing for confirming the 
diagnosis (8,97,98). Of note, in recent years molecular 
diagnostics have expanded the spectrum of small round 
blue cell sarcomas (sometimes referred to as Ewing’s-
like tumors) to include several new rearrangement 
partners for EWSR1 as well as other small round blue 
cell sarcomas with novel translocations such as CIC- and 
BCOR- rearranged sarcomas (99,100). Small round blue 
cell sarcomas that are negative for the classic Ewing’s 
translocation should be submitted for expanded molecular 

1 2 3 4

1 2 3 4
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CHROMOSOME 22
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EWSR1 Breakpoint
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A B

Figure 3 EWSR1-FLI1 rearrangement in Ewing sarcoma. (A) Graphic depicting the formation of the EWSR1-FLI1 fusion oncogene with 
the two most common EWSR1-FLI1 transcripts. Type 1 transcripts occur between exon 7 of EWSR1 and exon 6 of FLI1, while type 2 tran-
scripts occur between exon 7 of EWSR1 and exon 5 of FLI1. Other transcripts may less commonly occur (not pictured here). (B) Regardless 
of the transcript type or even the gene partner; FISH break apart probes are an effective strategy for identifying rearrangements involving 
EWSR1. FISH performed on FFPE tissue using an EWSR1 (22q12) break apart probe shows multiple cells with separation of the 3’ and 5’ 
ends of the probe indicating a rearrangement is present (arrows), magnification: 60×.
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genetic testing to identify other possible translocations.

SMARCA4-deficient undifferentiated thoracic tumor/
sarcoma

SMARCA4-deficient thoracic sarcoma (also known as 
SMARCA4-deficient undifferentiated tumor or SMARCA4-
deficient thoracic sarcomatoid tumor) is a recently described 
entity of uncertain histogenesis (27). Some authors have 
postulated that these lesions represent undifferentiated 
epithelial malignancies and that they are part of the disease 
spectrum of SMARCA4-deficient carcinoma, particularly 
since many of the tumors studied have been identified 
to harbor smoking related genomic signatures (101). 
The tumors thus far designated as sarcomas tend to have 
different clinicopathologic parameters than the carcinomas, 
including different age ranges, extrapulmonary locations, 
and a different pattern of metastasis suggesting they 
represent a distinct clinicopathologic entity (27,102,103). A 
small percentage of these lesions also occur in the absence 
of a smoking history making their exact histogenesis  
unclear (101). Whether these undifferentiated tumors 
represent epithelial malignancies, mesenchymal malignancies 
or both still requires some additional clarification. While it 
remains unclear whether these tumors definitively arise as 
primary mediastinal sarcomas, the tumors can commonly 
involve the mediastinal compartment and some show no 
evidence of pulmonary involvement raising the possibility 
that some may indeed occur as primary mediastinal tumors 
(27,101-103). Given that a large percentage of these 
lesions involve the mediastinum they are included here as 
pathologists should include them in the differential diagnosis 
of poorly differentiated sarcomas with rhabdoid morphology.

Molecularly these lesions are characterized by biallelic 
inactivation of the SMARCA4 (SWI/SNF-related, matrix-
associated, actin-dependent regulator of chromatin, 
subfamily A, member 4) gene that codes for Brahma-related 
gene 1 (BRG1); a member of the SWI/SNF complex 
(100,101). Inactivation occurs primarily through frameshift 
or nonsense mutations, although missense mutations, 
deletions, and splice site mutations have been identified 
as well (104). Mutations in TP53, NF1, KRAS, STK11, 
and KEAP1 may also occur in addition to the mutations 
in SMARCA4 (101,104). Cytogenetically the tumors can 
also show various copy number abnormalities, copy neutral 
loss of heterozygosity, and a generally complex genomic 
profile expected of a high-grade malignant neoplasm (104). 
Loss of SMARCA4 leads to dysregulation of the SWI/SNF 

(BAF) complex; a chromatin remodeling complex that is 
frequently mutated across many human cancers including 
synovial sarcoma, epithelioid MPNST, epithelioid sarcoma, 
and extrarenal rhabdoid tumor (Figure 4A) (105,106). 
Identification of the various mutations and complex 
genomic profiles of these tumors requires examination 
with advanced molecular techniques such as sequencing 
or a combination of various modalities (including array 
to identify copy neutral loss of heterozygosity), however 
the diagnosis can usually be made based on morphology 
combined with IHC showing loss of BRG1 expression 
(Figure 4B,C) (102,103).

SFT

SFT is a fibroblastic mesenchymal tumor that can occur with 
some frequency within the structures of the thorax including 
the mediastinum (107-109). The tumor is characterized by a 
pathognomic NAB2-STAT6 fusion oncogene arising from a 
recurrent intrachromosomal rearrangement on chromosome 
12q (109). Although most tumors follow an indolent clinical 
course, malignant variants or high-risk tumors have been 
reported, sometimes in association with additional genetic 
alterations such as TP53 and TERT promoter mutations 
(110-112). The fusion may be identified through sequencing, 
FISH, or reverse transcriptase PCR (107,108), however 
due to the close proximity of the genes involved in the 
translocation it may be missed by FISH. The diagnosis is also 
usually facilitated by IHC for STAT6 which is expressed in 
nearly 100% of tumors (111).

Less common mediastinal sarcomas

A wide diversity of other less common sarcoma subtypes 
have been reported to occur in the mediastinum as primary 
mediastinal tumors (Table 1) (6,8,9,11-24,113-115). These 
include sarcomas such as non-Ewing small round blue 
cell sarcomas and undifferentiated pleomorphic sarcomas, 
vascular tumors such as angiosarcoma and epithelioid 
hemangioendothelioma, bone tumors such as osteosarcoma, 
chondrosarcomas, and chordoma as well as various 
other more esoteric tumors such as follicular dendritic 
cell sarcoma, malignant PEComa, clear cell sarcoma 
and alveolar soft part sarcoma. Strict clinicopathologic 
correlation is required to rule out metastatic lesions 
from other primary soft tissue sites in these cases. Many 
of these lesions harbor recurrent or specific genetic 
abnormalities that can be identified through various 
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Normal Function of 
SWI/SNF complex

Fusion oncogene

Inactivating Mutations

Inactivating Mutations

SMARCA4-deficient 
thoracic sarcoma

Extrarenal rhabdoid tumors
epithelioid sarcoma
epithelioid MPNST

Switch/sucrose non-fermentable (SWl/
SNF) complex

[BRG1/BRM associated factor (BAF)]

Chromatin remodeling

Synovial sarcoma

A B

C

Figure 4 SMARCA4-deficient thoracic sarcoma. (A) Microscopic image (600×, hematoxylin and eosin) shows large epithelioid appearing 
cells with atypical nuclei, prominent nucleoli, and characteristic voluminous, sometimes eccentrically placed, eosinophilic cytoplasm consis-
tent with “rhabdoid” morphology. (B) IHC for BRG1 shows complete loss of staining within the tumor cells indicating loss of function of 
the SMARCA4 gene, magnification: 20×, BRG1 immunohistochemistry. (C) Graphic depicting the mammalian SWI/SNF (BAF) complex; as 
shown in the schematic, loss of function of SMARCA4 through inactivating mutations is involved in the oncogenesis of SMARCA4-deficient 
thoracic sarcoma. Of note other sarcomas occurring within the mediastinum also contain alterations within this complex including synovial 
sarcoma, epithelioid sarcoma, epithelioid MPNST, and extrarenal rhabdoid tumors.

molecular or cytogenetic techniques (Table 4). One such 
example is a less common variant of liposarcoma; myxoid 
liposarcoma. Unlike well-differentiated and dedifferentiated 
liposarcomas, myxoid liposarcomas follow a different 
oncogenic mechanism characterized by a t(12;16)(q13;p11) 
that leads to the formation of the fusion oncogenes, FUS-
DDIT3 (95% of cases) or EWSR1-DDIT3 (5% of cases) (75). 
Despite these recurrent genetic abnormalities, it is worth 
noting that many lesions in the less common category may 
be diagnosed on clinicopathologic grounds, however the use 
of ancillary molecular testing to confirm diagnoses and help 

identify difficult lesions is always beneficial if available.

Conclusions

Mediastinal sarcomas represent a heterogenous group of 
rare tumors. There is a small subset that appears to occur 
more frequently compared to some of the less common 
lesions. Many of these mediastinal sarcomas have specific, 
recurrent genetic abnormalities that can be identified 
through various molecular techniques to aid in diagnosis. 
These genetic abnormalities are often similar to their 
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Table 4 Translocations and other genetic alterations in less common mediastinal sarcomas

Tumor type Genetic abnormality
Gene fusion or amplification 
product

Low-grade fibromyxoid sarcoma t(7;16)(q32-33;p11), t(11;16)(p11;p11) FUS-CREB3L2, FUS-CREB3L1

Myxoid/round cell
Liposarcoma

t(12;16)(q13;p11), t(12;22)(q13;q12) FUS-DDIT3, EWSR1-DDIT3

Alveolar soft part sarcoma t(X;17)(p11;q25) ASPCR1-TFE3

Translocation associated small 
round blue cell sarcomas

t(4;19)(q35;q13), t(10;19)(q26;q13), paracentric inv(X)
(p11.4p11.22)

CIC-DUX4, CIC-DUX4, BCOR-
CCNB3

Extrarenal rhabdoid tumor Loss of SMARCB1 (INI1) secondary to biallelic loss of function 
mutations or heterozygous mutations in subunits of the SWI/
SNF (BAF) complex

Alveolar rhabdomyosarcoma t(2;13)(q35;q14), t(1;13)(p36;q14), t(2;2)(q35;p23), t(2;8)
(q35;q13)

PAX3-FOXO1, PAX7-FOXO1, 
PAX3-NCOA1, PAX3-NCOA2

Embryonal rhabdomyosarcoma Loss of heterozygosity on 11p15.5

Epithelioid hemangioendothelioma t(1;3)(p36;q25), t(X;11)(q22;p11) WWTR1-CAMTA1, YAP1-TFE3

Epithelioid sarcoma Loss of SMARCB1 (INI1) secondary to biallelic loss of function 
mutations or heterozygous mutations in subunits of the SWI/
SNF (BAF) complex

Extraskeletal myxoid 
chondrosarcoma

t(9;22)(q22;q12), t(9;17)(q22;q11), t(9;15)(q22;q21) EWSR1-NR4A3, TAF15-
NR4A3, TCF12-NR4A3

Chondrosarcoma Somatic point mutations in IDH1 and IDH2

Mesenchymal chondrosarcoma Del(8)(q13.3;q21.1), t(1;5)(q24;q32) HEY1-NCOA2, IRF2BP2-CDX1

Osteosarcoma Complex karyotypes with numerous structural changes 
reported and multiple types of mutations across many genes

Follicular dendritic cell sarcoma Often complex karyotypes, loss of function alterations in 
NFKBIA, CYLD, CDKN2A, RB1, CD274, PDCD1LG2 and 
BRAF V600E mutations

Small subset with MDM2 
amplification

Undifferentiated pleomorphic 
sarcoma

Rare targetable fusions identified in some cases, complex 
karyotypes, mutations in TP53, ATRX, RB1, however no 
recurrent genetic abnormalities 

extramediastinal bone and soft counterparts.
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