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Introduction

Despite the advances of multimodality treatments, lung 
cancer is still one of the world-leading causes of death. 
It has been estimated that over 228,000 people will be 
diagnosed with lung cancer in 2020 in the USA, and up to 
135,000 individuals will die of the disease (1). According 
to European data (2), pulmonary tumors represent the first 
cause of death for neoplasm in the male sex, and the second 

in women.
Non-small cell lung cancer (NSCLC) accounts for 85% 

of all cases (3) and up to 65% of the patients have locally 
advanced or metastatic disease at the time of diagnosis (4,5).

In recent years, molecular targeted treatments have 
progressively entered in standard therapeutic regimens 
for stage III–IV NSCLC (6,7). The latest update of 
NCCN guidelines (8) recommends osimertinib as first-line 
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treatment in patients with positive EGFR mutation, and 
alectinib in those with ALK rearrangement. Both NCCN 
and ASCO (9) guidelines strongly recommend the use of 
pembrolizumab, an immune checkpoint PD-1 inhibitor 
(ICI), as first-line treatment of patients with high PD-L1 
expression (>50%), alone or in association with platinum-
based regimens.

Molecular-based treatments are, however, not only 
reserved to patients with advanced, unresectable disease. 
There is indeed growing evidence that even subjects with 
limited disease may benefit from targeted therapies: several 
trials are investigating the use of tyrosine kinase inhibitors 
(TKIs) and ICIs as alternative neoadjuvant and adjuvant 
options for early stage NSCLC, or in case of recurrence 
after complete treatment (10,11).

At the present time, seven EGFR inhibitors, five drugs 
targeting ALK changes, four targeting abnormal ROS1, 
2 for BRAF gene changes, two interfering with NTRK 
gene changes, and four PD-1/PD-L1 blocking agents 
are available, and some of them were approved for the 
treatment of mutation-bearing NSCLC in the clinical 
practice (12,13). This is the reason why the search of 
a broad molecular analysis, including targetable gene 
aberrations and immunohistochemistry for PD-L1 testing, 
is strongly recommended at the time of diagnosis of 
NSCLC, not only on surgical specimens but also on small 
biopsy samples (8,14).

Several guidelines suggest EBUS-TBNA as the 
procedure of choice for the diagnosis and staging of patients 
with suspected NSCLC. The American College of Chest 
Physicians (ACCP) guidelines for the diagnosis and staging 
of lung cancer (15) recommend EBUS-TBNA both in 
case of enlarged lymph nodes regardless of PET uptake, 
and in patients with normal-size lymph nodes at CT scan 
showing pathologic FDG uptake at whole body-PET scan. 
Moreover, ACCP guidelines and the combined guidelines 
of the European Society of Gastrointestinal Endoscopy 
(ESGE), the European Respiratory Society (ERS), and 
the European Society of Thoracic Surgeons (ESTS) (16) 
both advise that patients undergoing pulmonary resection 
for NSCLC should be preoperatively staged with EBUS-
TBNA in case of tumors larger than 3 cm, centrally located 
lesions, or PET negative primary tumors.

In a recent prospective multicentric study (17), EBUS-
TBNA showed a higher diagnostic yield when compared to 
any other bronchoscopic sampling technique and resulted 
to be independently associated with a higher probability of 
diagnosis at multivariate analysis. The combination (CUS) 

of EBUS-TBNA and endoscopic ultrasound-fine needle 
aspiration (EUS-FNA) allows complete staging of the 
mediastinum in patients with NSCLC, reaching a sensitivity 
value even superior to that of cervical mediastinoscopy (18),  
and should therefore be preferred whenever available 
(15,16).

With the discovery of the therapeutic value of targetable 
EGFR mutation in 2004, the availability of an adequate 
amount of tissue for histology subtyping and molecular 
analysis became a critical issue. Despite the uncertain 
consistency of the initial results (19), small samples and even 
cytological specimens proved to be appropriate for a full 
molecular assessment of NSCLC when properly handled 
(20,21). Moreover, in the studies by Heymann et al. (22) and 
Verocq et al. (23), the immunohistochemical analysis of PD-
L1 expression on cytological and small biopsy samples from 
patients affected by NSCLC resulted comparable to the 
corresponding surgical samples.

Nowadays, EBUS-TBNA is a key diagnostic tool in 
patients with locally advanced or unresectable disease and 
for patients unfit for surgery because of comorbidities, 
reducing the need of invasive surgical diagnostic procedures. 
Considering these premises, EBUS-TBNA not only plays 
a key role in the diagnosis and staging of suspected lung 
cancer, but it also proved to allow accurate molecular 
characterization of the disease.

Adequacy of molecular genotyping and  
PD-L1 assessment on samples obtained by 
EBUS-TBNA: review of literature

In 2007, Nakajima et al. (24) first assessed the feasibility 
of EGFR mutation determination on samples obtained 
by EBUS-TBNA. In 43 out of 46 patients (93.5%) with 
newly diagnosed locally advanced or metastatic lung 
adenocarcinoma enrolled in the study, analysis of exons 19 
and 21 of EGFR gene was possible after polymerase chain 
reaction (PCR) on histological core-biopsy tissue. The 
Authors concluded that EBUS-TBNA was an appropriate 
technique for EGFR mutation analysis; notably, specimens 
had a lower burden of contaminating cells with respect to 
those obtained with other non-surgical sampling techniques.

So far, a number of other studies investigated the 
adequacy of EBUS-TBNA samples for the search of several 
biomarkers (Table 1). Gefinitib and crizotinib were the 
first TKIs approved for the treatment of metastatic lung 
cancer patients, respectively expressing EGFR mutation 
and ALK translocation. Considering the higher rates of 
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positive samples found in female, non-smoker patients with 
adenocarcinoma histology (51), molecular assessment was at 
first almost exclusively reserved to these cases. Moreover, as 
incidence of EGFR alterations is relatively higher in Asian 
race compared to Caucasians (ranging from 14% to 27%), 
Japanese groups were the first to report their experience on 
the topic (26,27,30).

Most Authors agree that the diagnostic yield of EBUS-
TBNA for molecular genotyping is high. In some studies, 
EGFR and ALK determination was possible in the entire 
cohort of the patients enrolled (26,30,36,38,39,43), and 
in most of the experiences adequate specimens were 
available in over 90% of patients who underwent EBUS-
TBNA. In 2018, Labarca et al. released a meta-analysis 
including 33 studies (almost 2,700 patients) evaluating the 
diagnostic power of EBUS-TBNA for NSCLC molecular 
characterization (52). The pooled diagnostic yield for 
EGFR and ALK determination reached 94.5% and 94.9%, 
respectively; combined EGFR and ALK analysis, reported 
by 9 of the trials analyzed, was successful in 94.2% of cases.

As a result of the introduction of new molecules, 
improved diagnostic and therapeutic pathway of lung 
cancer, and increased confidence with the technique, 
indication for molecular assessment on EBUS-TBNA 
samples has now been extended to patients with histotypes 
different from adenocarcinoma, as well as to those with 
limited disease. Guisier and colleagues (37) investigated 
the presence of multiple gene aberrations (including 
EGFR, ALK, KRAS, MET, and ROS1) in 111 patients 
with peripheral non-squamous NSCLC who underwent 
sampling with radial EBUS-TBNA. Biopsy tissue resulted 
adequate in about 80% of cases. Other trials confirmed 
the possibility to perform multiple molecular analyses on 
EBUS-TBNA samples, some reporting a percentage of 
sample adequacy even superior to 90% (38,41,43).

Patients showing with locally advanced or metastatic 
NSCLC, with wild-type EGFR and ALK and PD-L1 
expression in over 50% of neoplastic cell population [i.e., 
tumor mutational burden (TMB)] at immunochemistry 
(IHC) are suitable for the treatment with PD-1 or PD-
L1 ICIs (Figure 1). Significant results in terms of both 
local disease control and improvement of survival were 
demonstrated following treatment with these molecules (13). 
Considering that most patients with stage III–IV disease 
do not undergo surgical procedures, collection of adequate 
samples for IHC analysis by EBUS-TBNA has gained a 
prominent role.

Only few studies analyzed the feasibility of performance 

of PD-L1 testing by means of EBUS-TBNA, with 
diagnostic yield ranging from 86% and 100% of the patients 
tested (42,45,46,48,50). In the series by Sakakibara et al. (42),  
EBUS-TBNA samples showed a higher cellularity and 
contained better conserved tumoral cells with respect to 
those obtained with conventional transbronchial biopsy 
(TBB). Moreover, results of PD-L1 assessment were 
concordant to primary tumors and lymph node metastases 
with a good rate of correlation, as confirmed by another 
study (50).

As in case of other molecular biomarkers, cytological 
specimens demonstrated to be appropriate for a full analysis 
of PD-L1 with the currently available IHC platforms in 
the presence of adequate cellularity (45,48,50). Additional 
passes and large bore needles have been suggested to reduce 
confounding results due to possible tumor heterogeneity 
and choice of PD-L1 threshold; nevertheless, Smith and 
colleagues did not identify any significant procedural 
influencing factor (50).

Technical factors affecting accuracy of mutation 
analysis on EBUS-TBNA samples

It was demonstrated that accuracy of molecular analysis 
on lung cancer samples obtained by EBUS-TBNA is 
influenced by several intrinsic factors related to the tumor 
characteristics, such as histologic subtype, tumor location, 
target lymph node size, and grade of tumor heterogeneity 
between primary lesion and metastatic sites (30,37,42,46,53). 
Moreover, other factors potentially conditioning the rate of 
success are mutation prevalence in the examined population 
and ethnicity (52).

The role of technical features involved in EBUS-
TBNA outcome for the search of molecular aberrations 
has been widely investigated. Several studies pointed 
out that the choice of needle, number of passes, use of 
rapid-on-site-evaluation (ROSE), sample cellularity and 
contamination by surrounding necrosis or blood elements, 
and sample processing are determinant factors to obtain 
suitable material (33). The CHEST guidelines for EBUS-
TBNA released in 2016 recommend, regardless of ROSE 
availability, at least three passes for each sampled station, 
and possibly additional passes to increase effectiveness of 
mutation analysis, but with low level of evidence (54).

Others did not confirm these findings with contrasting 
results (34). The meta-analysis of Labarca et al. (52) failed 
to identify any procedural feature significantly correlated to 
provision of adequate material for molecular investigations.
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Needle size and type of sample

In most of the published series, cytological and histological 
samples are obtained with the employment of 21- or 
22-gauge needles. Although Authors supporting the 
use of larger bore needles confirm a similar diagnostic 
performance to 22-gauge needle, they report that samples 
obtained employing 21-gauge needles display conserved 
architecture, allowing better morphologic and genetic 
characterization of NSCLC (55). On the other side, 
22-gauge needle has the advantage of being able to reach 
‘difficult’ locations, such as 4L lymph node station, thanks 
to its flexibility.

Jeyabalan et al. (39) and Rosso and colleagues (41) 
analyzed the potential effect produced by the choice of 
needles of different size; both Authors, however, concluded 
that, given the comparable results, selection should follow 
the individual preference of the operator, as suggested by 
CHEST guidelines (54).

Number of passes and ROSE

In 2013, Yarmus and colleagues (56) analyzed the data of 85 
patients affected by lung adenocarcinoma or not otherwise 
specified (NOS) NSCLC. Excellent results for mutation 
analysis including EGFR, ALK, and KRAS were obtained in 
patients submitted to at least 4 passes per sampled site and 
concurrent ROSE. Raad et al. stated that the rate of success 
could be increased by carrying out more than 6 passes in 
a Center with ROSE availability (43). In some cases, even 
higher number of biopsies (up to 20) have been reported (42).

The studies addressing the use of ROSE in patients 
undergoing EBUS-TBNA for genotyping of NSCLC 
gave discordant results. According to Ghigna et al. (47), 
fresh-frozen samples sent for on-site examination provide 
uncrushed genetic material for ancillary tests of higher 
quality than fixed samples. A randomized trial comparing 
two groups of NSCLC patients who underwent molecular 
analysis with or without ROSE found no significant 

Figure 1 A 70-year old male patient was found to have a right solid pulmonary para-hilar mass invading the tracheobronchial angle (A); 
EBUS-TBNA resulted positive for adenocarcinoma G3 (TTF1 positive, p63 negative, synaptophysin negative, EGFR and ALK wild-type, 
KRAS positive) (B); at PD-L1 assessment (clone 22C3, Ventana Benchmark Ultra platform), 90% of neoplastic cells resulted positive (C); 
the patient underwent induction therapy with cisplatin-vinorelbine (four cycles) and concurrent radiotherapy. After restaging, the mass 
resulted resectable by means of pneumonectomy; yet, surgery was contraindicated due to poor respiratory function. Immunotherapy with 
durvalumab was started. Chest CT scan 7 months after diagnosis showed a significant reduction of the tumor (D).

A

C

B

D
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difference in terms of sensitivity and adequacy rate (57). 
Further investigations confirmed that, if an adequate number 
of passes per sampled station is performed (usually 3 to 4), 
it is possible to obtain a full molecular diagnosis of NSCLC 
regardless of the availability of ROSE (37,41,48,53). Hence, 
the use of ROSE is not mandatory, but it should be tailored 
on the basis of Center experience (54).

In the daily clinical practice, however, shortage of 
material for mutation analysis after routine processing for 
cytological and IHC analysis is common. Nevertheless, it 
has been showed that material obtained by even a single 
dedicated additional pass may provide sufficient material for 
a full molecular assessment (58), a factor that should always 
be considered to ensure adequate diagnosis, staging and 
molecular characterization of suspect lung cancer.

Sample management and detection method

Regardless of needle size, EBUS-TBNA sampled material 
can be processed in several ways both for histological and/
or cytological examination. Cytological specimens may be 
smeared on glass slides or assembled as paraffin-embedded 
cell blocks following individual preferences.

In 2010, the conjunct consensus released by the 
Internat ional  Associat ion for  the Study of  Lung 
Cancer (IASLC) and the European Thoracic Oncology 
Platform (59) advised the use of core biopsies for EGFR 
characterization until better definition of the role of 
cytological specimens; similar conclusions are reported by 
IASLC for IHC analysis of PD-L1 (60).

Nevertheless, several studies analyzing the results of 
molecular determination and PD-L1 determination on 
EBUS-TBNA samples so far demonstrated that cytological 
specimens, in particular cell blocks, enable high quality 
processing for such purposes (26,28,29,31,32,35,45). 
Bravaccini et al. (36) reported that wrong specimen 
handling after withdrawal rather than the amount of tissue 
available for analysis is responsible for missing diagnosis 
and molecular characterization.

According to the guidelines of the World Association 
for Bronchology and Interventional Pulmonology 
(WABIP), none between smear glass cytology, cell block 
and tissue core biopsy is superior to the others to improve 
the likelihood to obtain adequate samples (61). In fact, 
cellularity of the sample, ratio between normal and tumoral 
cells, and performance of the adopted method of detection 
seem to be the factors mostly influencing the diagnostic 
yield. In most of the published series, PCR is the preferred 

method for amplification of target sequences; yet, the 
quantity of tumoral DNA necessary for completion of 
analysis may vary according to the used technique (28). 
With regard to ALK analysis, there are some evidences 
supporting superiority of IHC over fluorescence-in-situ- 
hybridization (FISH) and real-time PCR (RT-PCR) (26). 
However, no detection method demonstrated to be superior 
to others in the meta-analysis of Labarca et al. (52).

Lung cancer restaging and EBUS-TBNA

Stage III of tumor-node-metastasis (TNM) staging system 
for NSCLC includes a variety of clinical presentations 
ranging from large pulmonary masses invading neighboring 
structures to small primary lesions with mediastinal 
lymph node metastases. Despite upfront surgery may be 
an option in carefully selected patients (e.g., in case of 
single N2 station disease) (62), it is widely accepted that 
primary resection without a preliminary induction therapy 
is detrimental because of high risk of incomplete resection 
and later recurrence (63).

In recent years, 18-F-FDG-PET scan demonstrated 
to be a useful tool to ensure appropriate staging of both 
primary tumor and regional and distant metastases (8). 
Still, some questions were raised regarding the efficiency of 
imaging for disease restaging after induction treatments. A 
recent systematic review underlined that, even if SUVmax 
and other newly introduced metabolic parameters seem to 
be promising factors for the evaluation of response, further 
larger trials are required to confirm the results (64).

Therefore, pathologic assessment after neoadjuvant 
therapy should sti l l  be considered mandatory for 
an  appropr i a te  therapeut i c  p l ann ing .  Repea ted 
mediastinoscopy or more invasive surgical approaches 
have been for a long time the only available techniques 
for preoperative evaluation of patients undergoing radical 
treatment. However, many Authors reported non-negligible 
rates of morbidity and mortality, and inadequate sensitivity 
and accuracy as consequences of technical challenges caused 
by the presence of inflammatory fibrosis induced by primary 
staging mediastinoscopy and oncological treatment (65).

The advent of EBUS-TBNA offered the possibility of 
a minimally invasive staging, and an improvement of the 
results of imaging staging when used in association with 
PET-CT scan (66). A summary of studies that investigated 
the role of EBUS-TBNA in mediastinal restaging is 
reported in Table 2.

Mediastinal restaging with EBUS-TBNA after induction 
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chemotherapy was first assessed in 2008 in a trial including 
89 patients (67). Samples resulted positive in all patients 
showing stable disease at restaging CT scan and persistent 
metastases at subsequent intraoperative biopsy. However, 
28 out of 35 EBUS-negative patients were found to have 
lymph node metastases at the time of surgery, resulting in 
suboptimal sensitivity and low (20%) negative predictive 
value (NPV). Nevertheless, the authors pointed out 
that these results were comparable to those obtained in 
patients who underwent induction therapy on the basis 
of non-invasive primary staging and later restaged with 
mediastinoscopy, and superior to repeated mediastinoscopy.

Several studies remarked the presence of a fair number 
of false negative patients influencing the NPV of EBUS 
for mediastinal restaging. Probably, residual cancer cells 
may be not detected in small EBUS samples, because of 
necrosis and fibrosis induced by neoadjuvant chemo- and 
radiotherapy (74). Nevertheless, some authors reported 
values of NPV superior to 80%, not as high as those 
obtained by surgical restaging, but with a significant lower 
rate of procedural morbidity (69,71).

The association of EBUS-TBNA and EUS-FNA 
may improve the performance of ultrasonographic  
restaging (69). Szlubowski and colleagues (70) showed that 
a full mediastinal restaging with combined EBUS and EUS 
is feasible with a single scope instrument (CUSb-NA). Both 
sensitivity and accuracy of CUSb-NA resulted significantly 
higher than EBUS-TBNA and EUS-FNA alone. However, 
these results have not been confirmed in another study with 
a smaller population (66).

Guidelines for the selection of endoscopic or surgical 
restaging of NSCLC are still lacking. However, considering 
the number of false negative patients found at restaging 
with EBUS-TBNA, pathologic surgical confirmation [either 
with mediastinoscopy, transcervical extended mediastinal 
lymphadenectomy (TEMLA), VATS, or thoracotomy] 
seems to be still advisable before considering definitive 
treatment, as confirmed by two recent meta-analyses 
(72,73).

Some patients treated with targeted therapy with TKIs 
or ICIs show incomplete response or tumor progression 
at follow up. In fact, the onset of new gene mutations 
inducing resistance to first-line treatments and tumor 
transformation into more aggressive, less differentiated 
histologic subtypes are well known phenomena (75-77). 
This is why disease restaging could help in the definition 
of the following treatment. Recovery times being notably 
shorter, restaging by means of EBUS-TBNA may reduce 
the time interval between diagnosis and therapy onset 
compared to surgical procedures. However, there are still 
few reports investigating the role of EBUS-TBNA for 
molecular restaging.

Kirita et al. (78) analyzed 70 patients with NSCLC who 
developed resistance to standard chemotherapy or targeted 
drugs. Eighteen patients were rebiopsied by means of 
EBUS-TBNA, and 52 with TBB. All EBUS-TBNA cases 
resulted diagnostic, compared to 83% of TBBs, even if the 
difference was not statistically significant. Genotyping was 
possible in all cases; one patient showed small-cell lung 
cancer (SCLC) transformation.

Table 2 Performance of EBUS-TBNA for mediastinal restaging after neoadjuvant chemotherapy or chemo-radiotherapy

Author, year N° patients Sampling technique Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, %

Herth, 2008 (67) 124 EBUS 76 100 100 20 77

Szlubowski, 2010 (68) 61 EBUS 67 86 91 78 80

Zielinski, 2013 (69) 88 CUS 64 100 100 82 NR

Szlubowski, 2014 (70) 106 CUSb 67 96 95 73 81

Nasir, 2014 (71) 32 EBUS 50 100 100 88 89

Genestreti, 2015 (66) 14 CUS 50 60 33 75 NR

Çetinkaya, 2017 (65) 44 EBUS 82 100 100 76 89

Muthu, 2018 (72)† 574 CUS 67 99 52 33 NR

Jiang, 2020 (73)‡ 558 CUS 65 99 NR 35 NR
†, Meta-analysis; pooled results with EUS-FNA; ‡, meta-analysis; results referred to EBUS-TBNA. CUS, combined EBUS and EUS; CUSb, 
combined EBUS and EUS using a single ultrasound bronchoscope; NPV, negative predictive value; NR, not reported; PPV, positive  
predictive value; EUS-FNA, endoscopic ultrasound-fine needle aspiration.
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In another study by Izumo et al. (79), molecular analysis 
was required in 53 NSCLC patients previously treated 
with TKIs who developed resistance. The rate of adequate 
samples for mutation analysis was higher in the group of 
patients who underwent EBUS-TBNA compared to TBB 
under EBUS guidance (100% vs. 75%, respectively). In 
both Kirita and Izumo series no complications related to 
EBUS-TBNA procedure have been reported, confirming 
the safety of the technique. However, the number of 
patients enrolled in these trials was low, and larger studies 
are required to confirm these results.

Next-generation sequencing (NGS) and future 
perspectives

In most of the studies investigating the feasibility of 
molecular analysis on samples obtained by EBUS-TBNA, 
only one or two genes were tested for target aberrations 
search (Table 1). Some Authors demonstrated that both 
cytological and histological EBUS-TBNA specimens are 
suitable for multiple analyses (37,41,43). However, wasting 
of material is still a problem to be faced, and accurate 
selection of molecular tests is an essential step to achieve 
adequate characterization of the disease. Nevertheless, the 
number of available therapeutic molecules for mutated 
NSCLC is rapidly increasing (12), as well as the alterations 
to be analyzed on the available tissue.

NGS is a novel technique that enables the simultaneous 
identification of a large panel (from 50 to over 1,000) of 
gene alterations—including target driver mutations—
assessed on a single platform (80). Hence, NGS is going 
to cover an important role in the therapeutic decision for 
patients undergoing targeted therapies, immunotherapy, 
and enrollment in clinical trials.

A few studies investigated the feasibility of NGS on 
samples obtained by EBUS-TBNA. One of the main 
limitations for its application is due to the necessity of 
increasing gradients of cellularity in the specimen according 
to the number of genes that have to be assessed. For this 
reason, the adequacy of small EBUS-TBNA samples for 
such purpose has been a note of concern.

Yet, it has been demonstrated that NGS analysis can be 
carried out not only on tissue core biopsies, but also on cell 
blocks, and even on cytology smears (81,82). Several studies 
reported a successful analysis in over 90% of EBUS-TBNA 
samples submitted for NGS (83-85).

In experienced centers, EBUS-TBNA has therefore 
emerged as a technique that enables provision of adequate 

specimens for a full molecular assessment in patients 
affected by NSCLC. Future research in the field of 
molecular analysis with EBUS-TBNA should be directed 
to the standardization of the sampling technique and 
tissue management, and the development of dedicated 
guidelines.

The low NPV, in particular in case of NSCLC restaging, 
is one of the main limitations of EBUS-TBNA, and 
studies are being carried out to overcome the high number 
of false negative cases with new more specific detection 
targets. Inage and colleagues (86) investigated the role 
of microRNAs assessment as tumor markers in patients 
undergoing NSCLC restaging after chemo-radiotherapy 
with encouraging results, as they were able to reach a NPV 
of 100%. However, further trials are needed to definitely 
improve the effectiveness of EBUS-TBNA in this field.

Conclusions

Samples obtained by EBUS-TBNA from patients affected 
by NSCLC are adequate for a full genetic profiling of 
alterations that can be targeted by tailored treatments. 
Despite the high number of technical variables involved 
(type of needle, number of passes, use of ROSE, sample 
management, detection method), none of these factors 
seems to sensitively affect the overall diagnostic yield of the 
technique.

The use of EBUS-TBNA should be encouraged in 
patients with NSCLC who need a restaging of disease 
after induction therapy, or progression in the course of 
therapy with TKIs or ICIs, to guide subsequent treatments. 
However, considering the relatively high number of false 
negative cases, it is still advisable to offer a surgical biopsy 
to patients without evidence of tumor cells on EBUS-
TBNA specimen before definitive treatment.
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