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Introduction

Thymic epithelial tumors (TETs) are neoplasms arising 
from epithelial cells of the thymus. Although relatively 
rare, with an incidence of approximately 1.5 cases/million, 
TETs are the most common malignancy of the anterior 
mediastinum in adults (1). Histologic classification of 
TETs is based on the World Health Organization (WHO) 
system, which was updated most recently in 2015 (2). 

TETs, primarily thymoma, are accompanied by a variety of 
autoimmune disorders including myasthenia gravis, pure 
red cell aplasia and Good’s syndrome (3). 

Surgery is usually the treatment of choice and the 
only curative option if the disease is localized. Platinum-
based chemotherapy is used for treatment of locally-
advanced or metastatic disease (4). However, treatment 
options for relapsed or refractory disease are limited (5).  
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Targeted therapies, such as epidermal growth factor 
receptor inhibitors (gefitinib, erlotinib with bevacizumab, 
cetuximab), angiogenesis inhibitors (sunitinib and 
aflibercept), c-KIT pathway inhibitors (imatinib), histone 
deacetylase inhibitors (belinostat), octreotide, and Src 
inhibitors (saracatinib), among others, have been evaluated 
in relapsed and refractory TETs, but have shown modest 
and short-lived responses (6-9). 

TETs have the lowest tumor mutation burden (TMB) 
among all adult cancers (10,11), which limits identification 
of new drug targets. Hence, novel approaches need to be 
considered to overcome the challenges associated with drug 
development for relapsed or refractory TETs. Activation of 
antitumor immunity is a promising option. However, the 
uniqueness of thymic physiology influences the risks and 
potential benefits of immunotherapy for TETs. 

Immunotherapy for treatment of cancer

Development of cancer is fundamentally related to defects 
in immune surveillance and the inability of the immune 
system to eliminate neoplastic cells in the early stages 
of tumor formation (12). Multiple immunotherapeutic 
modalities have been developed to overcome immune 
paresis and activate antitumor immunity including adoptive 
cell therapy (chimeric antigen receptor T cell therapy, T 
cell receptor therapy and tumor infiltrating lymphocyte 
therapy), cancer vaccines and immune checkpoint inhibitors 
(ICIs) [e.g., targeting programmed death-1 (PD-1) or its 
ligand (PD-L1) and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4)] (13). Amongst these options, ICIs 
are some of the most widely used forms of immunotherapy 
in clinical practice and are associated with objective 
responses and durable benefit in a subset of patients with 
a variety of cancers including carcinogen-induced cancers, 
cancers driven by viral infections such as Merkel cell 
carcinoma, microsatellite instability-high (MSI-H) tumors, 
desmoplastic melanoma, and Hodgkin’s disease (14-16). 

Efforts are underway to identify biomarkers that predict 
for response to ICIs (17). Tumor cell PD-L1 expression 
and TMB are established biomarkers of response. PD-L1 
activates the inhibitory signaling pathway on anti-tumor T 
cells by binding to PD-1, and its expression level influences 
the activity of anti-PD-1 and anti-PD-L1 ICIs. PD-L1 is 
the most commonly used predictive biomarker for anti-
PD-1/PD-L1 therapies (18,19).

The adaptive immune system recognizes tumor cells 
as foreign (non-self) via antigen recognition; hence, the 

quantity and quality of tumor antigens has a direct effect 
on anti-tumor response. TMB, which reflects the number 
of non-synonymous single nucleotide variants (nsSNVs) 
in a tumor affects the odds of generating antigens that 
can trigger an anti-tumor immune response and thereby 
influence the ability of ICIs to generate clinical responses in 
patients. Higher TMB implies more neoantigens in tumors, 
which can facilitate immune recognition and elicit T-cell 
responses. Several clinical trials in non-small cell lung 
cancer (NSCLC) have validated this correlation (20,21). 
Higher TMB is also associated with improved survival in 
patients receiving immunotherapy independent of cancer 
type (22).

In addition, robust anti-tumor immune response requires 
pre-existing presence of tumor-infiltrating lymphocytes 
(TILs). Therefore, the density of TILs also correlates with 
patients’ response to immunotherapy (23).

Despite these advances, not all patients destined to 
benefit from immunotherapy can be identified using tumor 
cell PD-L1 expression and TMB. Hence, there are ongoing 
attempts to develop a composite biomarker that can help 
identify the immunotherapeutic modality of choice for a 
given patient (24).

Activation of anti-cancer immunity also increases the risk 
of developing immune-related adverse events (irAEs) (25).  
The majority of irAEs in non-TET patients are of low 
to moderate grade and are manageable with established 
treatment protocols (26,27). However, some patients 
can experience life-threatening toxicity and efforts are 
underway to identify biomarkers that can predict the risk for 
development of irAEs (28). 

Immunotherapy for TETs

PD1/PD-L1 expression and TMB in TETs

PD-L1 expression in TETs has been widely evaluated. 
Although there are variations due to the assays used and 
measurement cutoffs, PD-L1 is commonly expressed in 
TETs: 23–92% of tumor cells in thymoma and 36–100% 
of tumor cells in thymic carcinoma express PD-L1 (29-32). 
These results provide a rationale for using PD-1/PD-L1 
inhibitors to treat TETs.

However, TETs also have the lowest TMB among 
all adult cancers (10). Although lower TMB is usually 
associated with a lower response rate to ICIs, the 
initial experience with ICIs in TETs (described below) 
demonstrates a relatively high response rate despite a low 
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TMB (33-35). The discordance between low TMB and a 
higher-than-expected response rate in TETs is likely related 
to the unique biology of the thymus and its role in T-cell 
development.

Implications of thymic physiology on immunotherapy for 
TETs

The thymus plays a crucial role in the development of 
immune tolerance. T cell progenitors undergo maturation 
in the thymus through interactions with cortical and 
medullary thymic epithelial cells. This process requires 
normal thymic architecture (cortex and medulla), and 
expression of major histocompatibility complex (MHC) 
class II and the autoimmune regulator (AIRE) genes (36).

As T cell progenitors pass through the thymic cortex 
and corticomedullary junction, a series of phenotypic 
modifications occur, which eventually results in the 
generation of a functioning T cell receptor. Immature 
T cells that do not react with MHC class II are purged 
whereas those that do are said to have undergone “positive 
selection” and enter the thymic medulla. The medulla 
contains both medullary thymic epithelial cells (mTECs) 
and dendritic cells. mTECs express various tissue-specific 
self-antigens (TSAs), an activity which is tightly controlled 
by the AIRE gene (37). mTECs expressing AIRE undergo 
rapid turnover that eventually results in apoptosis, releasing 
TSAs to thymic dendritic cells, which in turn present 
TSAs to developing T cell progenitors. T cells that react 
against TSAs (autoreactive T cells) undergo apoptosis. This 
process of “negative selection” results in the development of 
immune tolerance.

TETs lack normal thymic architecture and have 
abnormal thymic epithelial cells, downregulated MHCII 
and absence of AIRE expression. As a result, thymocyte 
development is dysfunctional and autoreactive T cells are 
released into the circulation due to absence of negative 
selection, resulting in an increased predisposition towards 
development of autoimmune disease (38,39). Additionally, 
autoreactive T cells can recognize self-antigens expressed 
on TET tumor cells and release interferon-gamma (IFN-γ), 
which can upregulate PD-L1 expression in TET tumor 
cells (40). These findings provide an explanation for high 
tumor cell PD-L1 expression in TETs.

Taken together, high tumor cell PD-L1 expression 
provides a rationale for using ICIs for treatment of TETs, 
whereas presence of autoreactive T cells in the circulation 

places TET patients at an increased risk for developing 
irAEs upon receiving immunotherapy when compared with 
patients with other malignancies. 

Clinical trials evaluating immunotherapy for 
TETs

Immune checkpoint inhibitors 

The anti-PD-1 antibody, pembrolizumab, and the anti-
PD-L1 antibody, avelumab, have been evaluated in patients 
with recurrent TETs (33,34,41). 

Giaccone et al. conducted a single-arm, phase 2 study 
of pembrolizumab in patients with recurrent thymic 
carcinoma. Patients with prior history of autoimmune 
disease were excluded from this trial. Among 40 evaluable 
patients, an overall response rate (ORR) of 22.5% was 
observed. The median duration of response was 22.4 
months. Median progression-free survival (mPFS) was 4.2 
months and median overall survival (OS) was 24.9 months. 
One-year PFS and OS were 29% and 71%, respectively. 
High PD-L1 expression was associated with longer survival 
(median PFS 24 vs. 2.9 months; median OS not reached vs. 
15.5 months) (34). 

Cho et al. evaluated pembrolizumab in 26 patients 
with recurrent thymic carcinoma and 7 patients with 
recurrent thymoma. Patients with active autoimmune 
disease requiring systemic treatment or a history of severe 
autoimmune disease were ineligible. The ORR was 19.2% 
in patients with thymic carcinoma and 28.6% in patients 
with thymoma. Tumors with high PD-L1 expression were 
more likely to respond to treatment. The median duration 
of response was not reached in patients with thymoma 
and was 9.7 months in patients with thymoma carcinoma. 
Median PFS was 6.1 months in both groups. Median OS 
was 14.5 months for thymic carcinoma and not reached in 
patients with thymoma (33). 

Rajan et al. evaluated avelumab, in 8 TET patients (7 
thymoma and 1 thymic carcinoma) with no history of 
autoimmune disease. Four of 7 patients with thymoma had 
an objective response including a confirmed partial response 
in 2 (29%) patients. Significant tumor shrinkage was 
observed after one dose of avelumab in three patients (41). 

These trials demonstrate the clinical activity of PD-1/
PD-L1 inhibitors in patients with recurrent TETs (Table 1).  
High PD-L1 expression appears to be associated with 
a greater likelihood of response and a subset of patients 
achieve durable responses.
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Cancer vaccines and other immunomodulatory strategies

Since TETs have a low TMB, few neoantigens have been 
identified, which has restricted development of cancer 
vaccines and adoptive T cell therapies. Several innovative 
neoantigen identification strategies are under investigation 
in refractory solid tumors incorporating high variant allele 
frequency, HLA-binding affinity and patients’ hotspot 
mutation (42). 

These efforts have resulted in the discovery of 
neoantigens in a patient with relapsed thymoma. The 
patient received a personalized dendritic cell vaccine 
targeting a somatic mutation of the CDC73 gene and 
achieved a durable complete response. Evaluation of 
peripheral blood mononuclear cells showed a strong 
immunologic response to the epitope of mutated CDC73 
protein (42). 

Wilms’ tumor-1 (WT-1) has also been identified as a 
neoantigen in TETs and a WT1 peptide-based vaccine 
immunotherapy has undergone evaluation in patients with 
advanced TETs. Disease stabilization was seen in most 
vaccinated patients (75%) accompanied by induction of a 
WT1-specific immune response (43,44). 

In addition to directly targeting antigens on tumor cells, 
radiation therapy has also been used to generate an immune 
response against TETs by harnessing post-treatment 
abscopal effects (45). 

Immunotherapy increases risk for autoimmune 
toxicity in TET patients

Since TETs, especially thymomas, are associated with 
defective immune tolerance, these tumors are associated 
with a wide spectrum of paraneoplastic autoimmune 
disorders (3,46). The most common autoimmune condition 
is myasthenia gravis, which is usually caused by antibodies 

to the acetylcholine receptor at the neuromuscular junction. 
The predisposition to paraneoplastic autoimmunity 
places TET patients at high risk for developing severe 
autoimmune toxicity upon treatment with immunotherapy 
when compared with patients with other malignancies.

Among the three published trials evaluating ICIs in 
TETs, 15–62.5% of patients developed irAEs (Table 2) 
(33,34,41). Although the incidence of irAEs is higher in 
association with thymoma, patients with thymic carcinoma 
are also at greater risk of developing immune-related 
toxicity. 

Effect on the neuromuscular junction and skeletal muscle

Immune-related toxicity can affect virtually any organ 
system (25). However, the incidence of irAEs involving the 
neuromuscular junction or skeletal muscle is strikingly high 
in TET patients receiving immunotherapy. 

Myasthenia gravis has been reported as an irAE in 3–14% 
of TET patients treated with pembrolizumab (33,34). 
Myasthenia gravis also developed many months after a 
thymoma patient received WT-1-peptide based vaccination 
(43). In contrast, myasthenia gravis as a complication of 
immunotherapy has been reported rarely in patients with 
other cancers.

Myositis was observed in 8% of patients with thymic 
carcinoma treated with pembrolizumab and more than half 
of thymoma patients enrolled on a dose-escalation trial 
of avelumab (34,41). The incidence of myositis is much 
lower in non-TET patients treated with immunotherapy. 
This is illustrated by a retrospective analysis of patients 
with melanoma treated with pembrolizumab or nivolumab, 
among whom 1.4% developed myositis (47). 

The propensity to develop myositis and neuromuscular 
adverse events appears to be related to the presence of a 

Table 1 Clinical activity of ICIs in relapsed TETs

Parameter 
NCT02364076 (Pembrolizumab) NCT02607631 (Pembrolizumab) NCT01772004 (Avelumab)

Thymic carcinoma Thymoma Thymic carcinoma Thymoma

Number of patients 40 7 26 7

Response rate (%) 22.5 28.6 19.2 28.5

Median PFS (months) 4.2 6.1 6.1 NA

Median OS (months) 24.9 NR 14.5 NA

TET, thymic epithelial tumor; PFS, progression-free survival; OS, overall survival; NR, not reached; NA, not available; ICIs, immune 
checkpoint inhibitors.
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TET rather than the type of immunotherapy. Interestingly, 
myasthenia gravis and polymyositis have also been observed 
in patients with thymoma after treatment with non-
immunotherapy drugs, albeit those with immunomodulatory 
properties, such as the insulin-like growth factor receptor-1 
inhibitor, cixutumumab and the multi-kinase inhibitor, 
sunitinib (7,48,49).

Effect on the myocardium

Myocarditis is a rare but serious autoimmune condition 
associated with TETs (<1%) (3). There are only few 
cases of TET-associated myocarditis reported in the 
pre-immunotherapy era (50-56). However, myocarditis 
(presenting either with symptoms, or isolated troponin 
elevation) was observed in 5% patients with thymic 
carcinoma and 43–57% patients with thymoma enrolled 
in clinical trials and treated with ICIs (33,34,41). The 
occurrence of myocarditis as a complication of ICI therapy 
in patients with thymoma has also been documented in 
case reports (57,58). In contrast, the risk of ICI-induced 
myocarditis in non-TET patients is less than 1% (47). 

Thus, TET patients, especially those with thymoma, 
appear to be at an increased risk of developing myocardial 
inflammation, in addition to effects on skeletal muscle and 
the neuromuscular junction.

Other immune-related AEs

The risk of irAEs affecting most other organ systems, such 
as the lungs, gastrointestinal tract, skin and endocrine 
organs, does not appear to be substantially higher in TET 
patients when compared with patients with other cancers 
(33,34,41). Pure red cell aplasia is a potential exception and 
it has been reported in patients with thymoma following 
treatment with a WT-1 peptide-based vaccine and after 
treatment with other immunomodulatory drugs (7,43,49). 

Strategies to reduce the risk of irAEs in TET 
patients

Since thymic biology places TET patients at an increased 
risk for irAEs, it is necessary to develop strategies that can 
identify and treat patients at risk, if immunotherapy is to be 

Table 2 Immune-related adverse events reported in clinical trials of ICIs in relapsed TETs

Immune-related adverse 
event

NCT02364076 (Pembrolizumab) NCT02607631 (Pembrolizumab) NCT01772004 (Avelumab)

Thymic carcinoma Thymoma Thymic carcinoma Thymoma

Number of patients 40 7 26 7

irAE, n [%]

Myasthenia gravis 1 [3] 1 [14] 2 [8] 0 [0]

Myocarditis 2 [5] 3 [43] 0 [0] 4 [57]

Polymyositis 3 [8] 0 [0] 0 [0] 4 [57]

Hepatitis 5 [13] 2 [29] 2 [8] 4 [57]

Pancreatitis 1 [3] 0 [0] 0 [0] 0 [0]

Bullous pemphigoid 1 [3] 0 [0] 0 [0] 0 [0]

Thyroiditis 0 [0] 1 [14] 1 [4] 0 [0]

Colitis 0 [0] 1 [14] 0 [0] 0 [0]

Nephritis 0 [0] 1 [14] 0 [0] 0 [0]

Conjunctivitis 0 [0] 1 [14] 0 [0] 0 [0]

Subacute myoclonus 0 [0] 0 [0] 1 [4] 0 [0]

Enteritis 0 [0] 0 [0] 0 [0] 1 [14]

Cranial neuropathy 0 [0] 0 [0] 0 [0] 1 [14]

TET, thymic epithelial tumor; irAE, immune-related adverse event. 
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developed as a feasible treatment option for these patients. 
In addition to defective immune tolerance associated with 
TETs, prior treatments, including chemotherapy, radiation 
therapy and targeted biologic therapies also have the 
potential to reshape patients’ immune profiles and increase 
the risk of developing irAEs (59). These observations 
provide an impetus towards developing risk mitigation 
strategies to enhance the safety of immunotherapy in the 
TET population. The following considerations merit 
discussion.

First, prior to initiation of immunotherapy, is it 
possible to identify TET patients with no clinical history 
of paraneoplastic autoimmunity who might be at risk 
for developing irAEs? Our group recently reported that 
pre-existing anti-acetylcholine receptor (anti-AchR) 
autoantibodies and B cell lymphopenia put thymoma 
patients at high risk for developing myositis after treatment 
with avelumab (60). Four out of seven thymoma patients 
had measurable anti-AchR autoantibodies at baseline, all 
of whom developed myositis upon treatment. In contrast, 
patients without anti-AchR autoantibodies did not develop 
myositis after receiving avelumab. Three of four patients 
who developed myositis also had pre-treatment anti-
striational antibodies, whereas these antibodies were absent 
in patients who did not develop myositis. In addition, 
thymoma patients who developed myositis had profound 
B cell lymphopenia at baseline (B cells comprised 0.19% 
of peripheral blood mononuclear cells) compared with 
TET patients who did not develop myositis (12.3%), 
individuals with non-thymic malignancies (8.3%) and 
age-matched healthy controls (16.3%). This finding is 
consistent with a recent report of treatment-induced B cell 
changes correlating with irAEs in patients with melanoma 
receiving ICIs (61). These observations merit further 
investigation and should prompt consideration of avoiding 
immunotherapy in thymoma patients with anti-AchR 
autoantibodies and severe B-cell lymphopenia even in the 
absence of a clinical history of paraneoplastic autoimmune 
disease.

Second ,  doe s  s e condary  p rophy l ax i s  w i th  an 
immunosuppress ive  drug  and  re-cha l lenge  wi th 
immunotherapy have a role in TET patients after successful 
treatment of an initial non-life-threatening irAE? In a 
retrospective series of 93 patients treated with an anti-
PD-1/PD-L1 ICI and experiencing an initial grade 2 or 
higher irAE, 40 (43%) patients were rechallenged with the 
same drug. The same irAE or a different irAE was observed 
in 22 (55%) patients (62). Recurrence of an irAE was 

associated with a short interval between initiation of ICI 
therapy and development of the initial irAE and the second 
event was not as severe as the initial event. Successful 
resumption of ICI therapy has also been described in 
patients receiving combination anti-CTLA-4 and anti-PD-1 
therapy and in two patients who developed immune-related 
myositis (63,64). These results show that ICI rechallenge 
appears potentially feasible, although the decision to 
reintroduce an ICI should be taken in the context of several 
factors including the benefit derived from initial therapy, 
and the type and severity of the initial irAE. ICI rechallenge 
is generally not recommended if a patient develops severe 
myositis, myocarditis, neurological or neuromuscular 
complications after initial treatment. The conditions under 
which an ICI can be reintroduced after an irAE needs 
further evaluation in a prospective clinical trial, especially 
in TET patients who are predisposed to severe and atypical 
irAEs. Future clinical trials also need to incorporate 
strategies for monitoring immune activation and the clinical 
activity of an irAE in TET patients who are considered 
for ICI rechallenge, with a low threshold to discontinue 
treatment upon recurrence of an irAE. The question of 
secondary prophylaxis with an immunosuppressive drug 
prior to ICI rechallenge has not been addressed thus far 
and needs further investigation. Use of immunosuppressive 
drugs for secondary prophylaxis against an irAE is especially 
complicated since these drugs have the potential to blunt 
the immune response triggered by the ICI. 

Third, since a fairly significant proportion of patients 
with thymoma (30–40%) have autoimmune disorders at 
diagnosis, can TET patients with pre-existing paraneoplastic 
autoimmunity be safely treated with immunotherapy 
without being placed at risk for a life-threatening flare of 
the preexisting autoimmune condition upon initiation of 
immunotherapy? This question also needs to be addressed 
in future studies since most TET patients with coexisting 
autoimmune diseases are excluded from ongoing clinical 
trials. Johnson and colleagues have demonstrated the 
feasibility of using an ICI to treat patients with preexisting 
autoimmune disorders. In a study of ipilimumab in 
30 patients with advanced melanoma and preexisting 
autoimmune disorders (including rheumatoid arthritis, 
inflammatory bowel disease, sarcoidosis, transverse myelitis, 
psoriasis, and Grave’s disease), treatment exacerbated 
preexisting autoimmune disorders in eight patients (27%) 
and new irAEs arose in 10 (33%) patients. However, 
15 (50%) patients had neither a flare of preexisting 
autoimmune disease nor did they develop new irAEs (65). 
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Although the risk of autoimmune exacerbation might 
be higher in TET patients due to underlying biological 
differences, these results provide a basis for including TET 
patients with certain preexisting autoimmune conditions in 
future immunotherapy trials without putting them at undue 
risk for development of treatment-related complications. 

Future avenues for immunotherapy in TETs

Besides published trials of ICIs in TETs, there are five 
ongoing clinical trials that are evaluating ICIs alone 
(avelumab, nivolumab or pembrolizumab) or in combination 
with other drugs (pembrolizumab with epacadostat or 
sunitinib) in TET patients (Table 3). Results of these trials 
are keenly awaited and will provide further information 
about the risks and benefits of using ICIs, either alone or as 
part of a combination strategy in patients with TETs.

In addition to blocking the PD-1/PD-L1 axis, there are 
multiple co-inhibitory immune checkpoints (LAG3, B7-
H3, B7-H4 and TIM-3) and co-stimulatory molecules 
(CD137, GITR, ICOS) regulating T cell-mediated anti-
tumor response (15). A recent study has reported TIM-3 
expression in TETs (66), which provides a new target for 
immune checkpoint inhibition. These results also highlight 
the need for comprehensive immune profiling of TETs to 
identify new therapeutic targets.

Conclusions

ICIs have shown clinical activity in relapsed and refractory 
TETs but are associated with a high risk of precipitating 
irAEs. Therefore, if ICIs are under consideration for TET 
patients, it is preferable that treatment be administered in 
the context of a clinical trial. TET patients with preexisting 
autoimmune disorders are at very high risk of developing 
irAEs and should not be treated with immunotherapy until 

adequate risk mitigation strategies have been developed. 
Biomarkers for identification of TET patients at risk for 
irAEs are under development. 

Treating TETs with immunotherapy involves a balancing 
act between inducing a clinical response and precipitating 
potentially severe irAEs. To make immunotherapy a safe and 
feasible option for patients with TETs, the aforementioned 
challenges will have to be overcome before widespread 
adoption of these treatments.
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